Facile plasma-enhanced deposition of ultrathin crosslinked amino acid films for conformal biometallization.

نویسندگان

  • Kyle D Anderson
  • Joseph M Slocik
  • Michael E McConney
  • Jesse O Enlow
  • Rachel Jakubiak
  • Timothy J Bunning
  • Rajesh R Naik
  • Vladimir V Tsukruk
چکیده

A novel method for the facile fabrication of conformal, ultrathin, and uniform synthetic amino acid coatings on a variety of practical surfaces by plasma-enhanced chemical vapor deposition is introduced. Tyrosine, which is utilized as an agent to reduce gold nanoparticles from solution, is sublimed into the plasma field and directly deposited on a variety of substrates to form a homogeneous, conformal, and robust polyamino acid coating in a one-step, solvent-free process. This approach is applicable to many practical surfaces and allows surface-induced biometallization while avoiding multiple wet-chemistry treatments that can damage many soft materials. Moreover, by placing a mask over the substrate during deposition, the tyrosine coating can be micropatterned. Upon its exposure to a solution of gold chloride, a network of gold nanoparticles forms on the surface, replicating the initial micropattern. This method of templated biometallization is adaptable to a variety of practical inorganic and organic substrates, such as silicon, glass, nitrocellulose, polystyrene, polydimethylsiloxane, polytetrafluoroethylene, polyethylene, and woven silk fibers. No special pretreatment is necessary, and the technique results in a rapid, conformal amino acid coating that can be utilized for further biometallization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasma-enhanced copolymerization of amino acid and synthetic monomers.

In this paper we report the use of plasma-enhanced chemical vapor deposition (PECVD) for the simultaneous deposition and copolymerization of an amino acid with other organic and inorganic monomers. We investigate the fundamental effects of plasma-enhanced copolymerization on different material chemistries in stable ultrathin coatings of mixed composition with an amino acid component. This study...

متن کامل

Plasma amino acid coatings for a conformal growth of titania nanoparticles.

We report on the conformal synthesis of ultrathin films from the amino acid histidine on flat silicon substrates and 3D periodic polymer structures via plasma enhanced chemical vapor deposition. We demonstrate the efficient utilization of this functional amino acid nanocoating for the formation of individual titania nanoparticles with dimensions from 2 to 15 nm depending upon reduction conditio...

متن کامل

Responsive plasma polymerized ultrathin nanocomposite films

The plasma polymerization of NIPAAM and titanium isopropoxide monomers into responsive ultrathin films with responsive optical properties using plasma enhanced chemical vapor deposition is reported. The composite ultrathin films possess a large window for potential changes in their refractive index from 1.60 to 1.95. We demonstrated that these polymer films exhibit fast (transition time below 2...

متن کامل

Ultrathin CVD Cu Seed Layer Formation Using Copper Oxynitride Deposition and Room Temperature Remote Hydrogen Plasma Reduction

Cu seed layers for future interconnects must have conformal step coverage, smooth surface morphology, and strong adhesion. Conformal deposition had been achieved by chemical vapor deposition CVD , but CVD Cu films have rough surfaces and poor adhesion. In this paper, conformal, smooth, adherent, continuous, and thin 9 nm Cu films were made by CVD. CuON was deposited from a Cu-amidinate precurso...

متن کامل

Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications

A vapor phase deposition system was designed to coat uniform, conformal and ultrathin coatings of fluoropolymer and fluorosilane thin films inside silicon nanochannels. Surface modifications using vapor phase deposition become increasingly important for biomedical micro/nanoelectromechanical system BioMEMS/NEMS applications and have advantages over liquid phase deposition since the vapor can pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Small

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2009